3.879 \(\int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx\)

Optimal. Leaf size=89 \[ \frac {2 (b B-a C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}-\frac {2 a (b B-a C) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}+\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d} \]

[Out]

2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/b/d+2*(B*b-C*a)*(cos
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^2/d-2*a*(B*b-C*a)*(cos(1/2
*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/b^2/(a+b)/d

________________________________________________________________________________________

Rubi [A]  time = 0.30, antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3029, 3002, 2639, 2803, 2641, 2805} \[ \frac {2 (b B-a C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}-\frac {2 a (b B-a C) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}+\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])),x]

[Out]

(2*C*EllipticE[(c + d*x)/2, 2])/(b*d) + (2*(b*B - a*C)*EllipticF[(c + d*x)/2, 2])/(b^2*d) - (2*a*(b*B - a*C)*E
llipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(b^2*(a + b)*d)

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2803

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[d/b
, Int[1/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps

\begin {align*} \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx &=\int \frac {\sqrt {\cos (c+d x)} (B+C \cos (c+d x))}{a+b \cos (c+d x)} \, dx\\ &=\frac {C \int \sqrt {\cos (c+d x)} \, dx}{b}-\frac {(-b B+a C) \int \frac {\sqrt {\cos (c+d x)}}{a+b \cos (c+d x)} \, dx}{b}\\ &=\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {(b B-a C) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b^2}-\frac {(a (b B-a C)) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^2}\\ &=\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d}+\frac {2 (b B-a C) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 d}-\frac {2 a (b B-a C) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^2 (a+b) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.89, size = 128, normalized size = 1.44 \[ \frac {b B \left (2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-\frac {2 a \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}\right )-\frac {2 C \sin (c+d x) \left (-(a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+a \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{\sqrt {\sin ^2(c+d x)}}}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])),x]

[Out]

(b*B*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b)) - (2*C*(b*Ellipti
cE[ArcSin[Sqrt[Cos[c + d*x]]], -1] - (a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + a*EllipticPi[-(b/a),
ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/Sqrt[Sin[c + d*x]^2])/(b^2*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/((b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

maple [A]  time = 2.52, size = 295, normalized size = 3.31 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (B \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -B \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}-B \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right ) a b -C \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}+C \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -C \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +C \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+C \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right ) a^{2}\right )}{b^{2} \left (a -b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-B*Ellipti
cPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a*b-C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2+C*EllipticF(cos(1/2
*d*x+1/2*c),2^(1/2))*a*b-C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b
^2+C*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^2)/b^2/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/((b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))),x)

[Out]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________